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Multiple sequence alignments (MSAs) have become some of the most widely used 

tools in molecular biology. Alignments can show the biological relationship between the 

different sequences, and can give information pertinent to phylogenetic analysis, function 

and structure prediction, and the detection of crucial residues. Because of their importance, 

many models have been proposed in order to optimize the creation of these alignments. 

This paper will discuss some of the computational methods used to create MSAs, and 

analyze some important programs that use these methods. 

 

Pairwise Alignment 

Pairwise alignments are generally found using dynamic programming designed to 

generate a globally optimal solution.  This method relies on scoring matrices such as PAM, 

which uses an evolutionary model of rates for mutation, and BLOSUM, which uses 

information gathered from families of related proteins. While dynamic programming can 

guarantee an optimal alignment based on the scoring method used, it is inefficient to use to 

generate an alignment for multiple sequences. Because the computational complexity of 

this method is O(nk) for k sequences of length n, it becomes prohibitively expensive after 

more than a couple sequences (Lipman et al 1989, Wang 1994). Creating an accurate, 

biologically significant sequence alignment in an acceptable amount of time is a complex 

problem, so a variety of different methods to accomplish this have been developed over the 

years. 

 

Progressive Alignment 

Many algorithms have been developed to minimize the computational complexity 

involved in MSA, and the most widely used approach is a heuristic known as progressive 

alignment. This strategy involves three major steps: First, sequences are aligned in pairs 

that fill a distance matrix. Second, a clustering algorithm such as UPGMA or neighbor-

joining is then applied to the distance matrix to form a rooted binary guide tree. Finally, 



Figure 1. Clustal's strategy for forming an MSA. 
(Higgins and Sharp 1988) 

 

alignments are found using the 

guide tree by traveling up the tree 

from leaf to root, progressively 

adding sequences by aligning the 

two sequences at each node. The use 

of the guide tree limits the number 

of pairwise alignments: An 

alignment constructed from a guide 

tree of N sequences requires N – 1 

pairwise merges, so the 

computational cost of the alignment 

is effectively linear for the number 

of sequences (Do and Katoh 2008). 

 The greedy nature of this 

heuristic is its greatest drawback. 

Because it looks at two sequences at 

a time and ignores the remaining 

data, it cannot guarantee an optimal 

solution. Mistakes made in earlier 

alignments are not corrected, and so they propagate throughout the process, and 

increasing the number of sequences increases the severity of these problems.  

 

ClustalW: A Progressive Alignment-based MSA Program 

ClustalW was first introduced in 1994, but remains a widely used alignment 

program. It uses the progressive alignment method (Fig. 1), but employs several methods 

in order to overcome the shortcomings of this approach. It uses a weighting system to 

correct for over - representation of extremely similar sequences, and uses position-specific 

gap penalties such that areas where gaps occur frequently are given lower penalties 

(Thompson et al 1994). In an attempt to overcome the greediness of the progressive 

alignment method, it delays the incorporation of the most divergent sequences until the 

end. For relatively similar sequences having identity above 30%, ClustalW is able to 



produce reasonably accurate results quickly, but its utility is limited for more divergent 

sequences (Pei 2008).  

Because ClustalW is so widely used, it remains a useful tool to start with when 

attempting to create MSAs. However, ClustalW it is less accurate and scalable than modern 

programs, so it is typically better to supplement with the alignments produced by other 

programs. Its main advantage is its comparatively low memory usage, so it is an optimal 

choice only in limited cases when memory size is an issue (Edgar and Batzoglou 2006). 

 

Iterative strategy 

The shortcomings caused by the greedy nature of the progressive alignment can be 

addressed through the iterative strategy. In this method, subsets of the aligned sequences 

are realigned after an initial progressive alignment. These iterations almost always 

improve the accuracy of the MSA (Wallace, et al 2005), and they can be repeated a set 

number of times or until convergence.  

 

MUSCLE and MAFFT 

 MUSCLE and MAFFT are two programs that rely on iterative refinement to create a 

MSA with accuracy comparable or better than ClustalW.  Their most significant advantage 

over ClustalW and other alignment process is their speed. 

 MUSCLE speeds up the progressive alignment method by constructing the guide 

tree more quickly. In contrast to ClustalW, pairs of sequences are compared and clustered 

based on the number of kmers, sub-sequences of length k, that they share. This information 

is then used to create the guide tree. The Kimura distance correction is applied to the 

generated MSA and a new tree is constructed. This is repeated at least once to further 

improve the tree (Fig. 2). Once the tree is fixed, MSA generation is further optimized by 

realignment based on different sub-trees.  

 MAFFT also avoids the time-costly initial pairwise alignments by detecting 

homologous segments using the Fast Fourier Transformation (FFT). In this method, the 

sequences are represented by volume and polarity values, and areas of homology have high 

FFT peaks. MAFFT offers several options for generating the final MSA, including FFT-NS-i, 

which uses tree-dependent restricted partitioning to iteratively refine the MSA. When FFT-



Figure 2. Three main stages behind MUSCLE's algorithm. 1. A draft progressive alignment 
is performed; 2. An improved progressive is performed; and 3. The MSA is refined. An MSA is 
available at each stage. (Edgar 2004) 

NS-i is used on larger groups of sequences, it can be 100 times faster than rival programs 

without sacrificing accuracy (Katoh, et al 2002). 

Because these two programs both avoid the time-costly dynamic programming used 

to generate the initial tree, both are much faster than ClustalW, yet maintain reasonable 

accuracy and computational cost (Edgar and Batzoglou 2006). As such, MAFFT and 

MUSCLE are great choices when aligning large numbers of sequences (>100). These 

programs also have the added advantage of being extremely flexible, and allow the user to 

modify the programs to run even faster, if some accuracy can be sacrificed.  

 

Consistency - Based 

Consistency-based methods attempt to overcome the limitations of progressive 

alignment by incorporating more information when constructing MSAs.  The main problem 

of progressive alignment is due to its greedy nature: It takes very limited information into 



account at once. Most consistency-based methods are also greedy heuristics, but still are 

able to incorporate more information while forming the alignment and are thus able to 

reach higher levels of accuracy. These methods commonly evaluate the pair-wise alignment 

through comparison to a third sequence: Given three sequences, A, B and C, the alignments 

of A-B and B-C may imply that A and C should also be aligned (Edgar and Batzoglou 2006). 

Since consistency-based aligners maintain this transitive nature, they are typically more 

accurate than regular iterative progressive aligners like ClustalW, Muscle, or Mafft.  Besides 

increased accuracy, consistency-based methods offer the additional advantage of being 

able to incorporate different sources of data such as local, global, and structure-based 

alignments (Pei 2008). This increased accuracy comes at a significant cost to speed: 

consistency-based algorithms take N (number of sequences) times more CPU processing 

time on average (Kemena and 

Notredame 2009). 

 

T-Coffee 

T-Coffee was the first 

program that combined 

consistency-based scoring with 

progressive alignment, and was a 

significant improvement at the time 

of its creation. It features two main 

innovations: First, it is able to use 

heterogeneous data sources to 

generate the MSA; second, it finds 

the MSA in a manner that considers 

the alignments between all pairs at 

a time (Notredame, et al 2000).  

First, two libraries of all 

pairwise alignments are generated 

for two different sources: Lalign, 
Figure 3. T-Coffee's strategy. (Notredame et al 2000) 



which creates sets of non-overlapping local alignments, and ClustalW. This means that the 

final alignment will be produced from both global and local alignment information. T-

Coffee then uses a weighting system to score each pair of residues in both libraries based 

on the sequence identity. These two libraries are then combined, and identical pairs are 

merged into one extended library, with the weight of the two original weights summed 

together. These weights are used to generate a Neighbor Joining tree, and an alignment is 

produced via the progressive method (Fig 3).  

T-Coffee remains as one of the best programs in terms of accuracy. The increase in 

accuracy is especially clear with difficult test cases, and is always evident regardless of the 

spread of the sequences in the tests (Notredame 2000). Because it does have a higher 

computation time and memory usage, however, it is not ideal for larger (>100) sets of 

sequences (Edgar and Batzoglou 2006). Besides its accuracy, it has the additional 

advantage of being able to incorporate more than one type of information, which can 

significantly increase accuracy if structural information is included.  

 

ProbCons and MUMMALS 

 Both of these programs are similar to T-Coffee, but use a probabilistic framework 

instead to determine consistency.  They determine the posterior probability that a pair 

would be aligned in each particular position. These programs then use these probabilities 

to generate the guide tree for progressive alignment.  

ProbCons uses pair - hidden Markov models (HMM) to compute the posterior-

probability matrices for every pair of sequences. Dynamic programming is then used to 

find the alignment that maximizes expected accuracy for each pairwise alignment. The 

match accuracy scores are re-estimated using a probabilistic consistency transformation. 

The guide tree is then created and an MSA is progressively created. The MSA is refined 

iteratively as many times as desired by realigning random bi-partitions of the alignment.  

MUMMALS expands on the probabilistic consistency approach by using more 

complex HMMs. It also uses a pre-aligning step that results in groups of more divergent 

sequences because highly similar sequences are aligned without consistency scoring. This 

step allows it to better balance speed and accuracy. 



Both of these programs achieve statistically significant improvements in accuracy 

over other leading methods (Do et al 2005), with MUMMALS achieving a slightly higher 

scores (Table 1). They are also flexible: ProbCons offers several options to increase 

accuracy by repeating consistency replication and iterative refinement steps; MUMMALS 

has the option to use a more complex HMMs to increase accuracy in exchange for a slower 

alignment. As these are consistency - based methods, however, they are computationally 

expensive and are not recommended for large alignment problems (>100 sequences) 

(Edgar and Batzoglou 2006). 

 

 

 While the alignment programs explored thus far in this paper vary in performance 

for different tests, it is impossible to predict which program will function best for a specific 

dataset. All of these methods also perform poorly on sequences with similarity below the 

“twilight - zone” of identity less than 20% (Pei 2008). Meta - methods such as M-Coffee 

attempt to address these problems by combining several methods into one MSA. While M-

Coffee creates alignments better than any of the individual alignment programs on most of 

the considered datasets, the improvement is very small - at a few percent (Wallace 2006). 

Furthermore, M-Coffee is unable to solve the problem of poor performance on remote 

homologs, suggesting that it may not be possible to reach significantly better alignment 

using only sequence information. 

 

Table 1. Assessment of multiple sequence alignment programs. The first five methods are MUMMALS, using 
different HMMs. MUMMALS' best score and the best score of the other programs are bolded. With this test, 
MUMMALS did statistically better with p < 0.01. (Pei and Grishin 2006) 



Template - Based Methods 

Since alignment methods are still unable to align remote homologs, the best 

alternative is to use additional information to increase the accuracy of predictions. 

Template - based methods refers to improving a sequence by using templates such as 3D 

structure or any sort of profile or prediction. Typically, these templates fall into two 

categories: structural or homology extension.  

Structural extension involves using the Protein Data Bank (PDB) to find homologs of 

pairs of sequences. These PDB templates can then aligned with each other or the original 

sequences to generate an MSA (Fig 4). Generally, structure is more conserved than 

sequence, so the addition of structural information should provide a more biologically 

significant MSA. Homology extension 

uses the same principles, but uses 

profiles rather than structures. 

Aligners that use this extension 

replace each sequence with a 

homolog profile, typically generated 

using PSI-BLAST. The use of both 

structural and homology templates 

results in increased accuracy in all 

cases (Kemena and Notredame 

2009). 

 

Expresso/3DCoffee 

 Expresso/3DCoffee is a 

server that uses structural 

information produce the MSA. It is 

essentially an expansion on the 

consistency-based heuristic that T-

Coffee uses. The pairwise alignments 

in Expresso, however, are generated 

Figure 4. Framework of a Template-Based Method. 
(Notredame 2007) 



by using a BLAST search to identify templates from the PDB. The criteria for template 

selection limits selection to close homologs by requiring a minimum of 60% identity with 

the source sequence and at least 70% of the source residues matched (Armougom 2006). 

Once every input sequence has an assigned template, it applies several alignments to the 

data. For each pair, the global and local alignments are generated using the Needleman-

Wunsch method and Lalign respectively. Structure - structure alignment is performed by 

LSQman, which uses rigid body superposition iteratively to find an optimal superposition, 

or SAP, which computes the alignments. In pairs where only one structure is known, 

sequence - to - structure alignment is performed by FUGUE, which turns the structure into 

a position-specific substitution matrix. When the library is created, the MSA is created 

using T-Coffee’s method. 

With the addition of just one structure, the alignment produced by Expresso shows 

increased accuracy, and accuracy increases proportionally to the amount of structural 

information provided (Poirot et al 2004). In distantly related sequences, Expresso shows a 

linear correlation between accuracy and the ratio of structures to sequences. The 

alignment is also relatively fast, and share’s T-Coffee’s flexible nature to potentially include 

any structural analysis method (O’Sullivan 2004). The high accuracy, however, must be 

taken with a grain of salt as the references themselves are often created in a similar way.  

  

PRALINE and SPEM 

PRALINE can optimize alignments through a variety of methods. First, it can use 

global or local alignment, or the PSI-PRALINE methods to create a homology - extended 

alignment. The PSI-PRALINE strategy uses PSI-BLAST on each sequence to create the 

profiles that are later used to progressively generate the MSA. Second, it can integrate 

secondary structure information by using the Protein Data Bank (PDB). If this information 

is unavailable, then PRALINE can use one of seven (PHDpsi, PROFsec, SSPRO 2.01, YASPIN, 

PSIPRED, JNET and PREDATOR) methods to predict the secondary structure and use these 

predictions in the profiles instead. Finally, PRALINE can also include iterative refinement to 

further improve the alignments. 

SPEM focuses on the creation of pairwise alignments. It also uses PSIBLAST to 

search for homologous sequences to create profiles. Then, secondary sequence information 



or predictions are used to apply secondary structure dependent gap penalty values. A 

consistency - based scoring method is used in order to further refine the pairwise 

alignments. From there, a tree is created, generating the final alignment.  

Both of these programs use homology and the structure extension to improve the 

alignments generated. The PSI-PRALINE method increases accuracy compared to other 

alignment programs such as T-Coffee and MUSCLE on average, and has an even greater 

increase for sequences of low homology (Simossis and Heringa 2005). The addition of 

secondary structure information to both basic PRALINE and PSI-PRALINE also shows 

improvement. SPEM also shows improvement with remote homologs on a variety of 

benchmarks, while remaining statistically indistinguishable from ProbCons and MUSCLE 

when aligning sequences with >30% similarity (Table 2).  

While the quality of the alignments produced by the PRALINE and SPEM are 

extremely accurate, they are both computationally expensive: PSI-BLAST must be ran for 

each sequence, and SPEM utilizes a consistency - based scoring method. These two 

programs are best used with smaller numbers of diverse sequences. 

 

PROMALS 

 PROMALS is a method that uses the probabilistic consistency-based scoring that 

was developed with ProbCons, but improves it by including predicted secondary structure 

and homolog information. PROMALS follows a similar method as MUMMALS, and has a first 

step in which highly similar sequences are aligned quickly (Fig 5). In the second alignment 

stage, PSI-BLAST is used to search for homologs, with hits of <20% identity removed and 

up to 300 hits selected (Pei and Grishin 2007). For each pair, profiles are developed from 

the PSI-BLAST alignment and predictions of secondary structure created by PSIPRED. It 

Table 2. Alignment accuracies given from several methods on SABmark 1.63 benchmark. Spem 
shows considerable improvement on sequences in the "twilight" set. (Zhou and Zhou 2005) 



uses a profile-profile HMM that creates the matrix of posterior-probabilities that is needed 

for probabilistic consistency-based scoring to create the MSA.  

Compared to the best alignment methods that rely solely on sequence information, 

PROMALS is up to 30% more accurate, with the most improvement in highly divergent 

homologs (Table 3). While PROMALS also shows some improvement over SPEM and other 

template-based programs, it is still is unable to provide the best alignment each time, 

suggesting that alignments can vary greatly when performed on divergent sequences. Since 

PROMALS spends a great amount of time collecting homolog and structural information, it 

runs very slowly, taking around half an hour while stand-alone programs finish their 

alignments in less than a minute (Pei and Grishin 2007).  

 

Figure 5. PROMALS procedure. The gray arrows show the most time-consuming steps: Running PSI-BLAST and 
PSIPRED and running the consistency transformation. (Pei and Grishin 2007) 

Table 3.  Evaluation of alignment methods. For each data set, PROMALS yields statistically higher accuracy (bold 
numbers) than any other method (P-value <0.000001). (Pei and Grishin 2007). 



Conclusions 

 MSAs will continue to be important in the future, and tools to create them will 

continue to improve. Some of the recent trends include the ability to process many 

sequences rapidly, combine methods, and most importantly, incorporate more information. 

Methods such as MAFFT and MUSCLE allow for the processing of many sequences rapidly. 

Meta-methods that can combine different methods in one framework and reduce the 

amount of work needed on the user’s part. As additional structural information becomes 

available, template-based methods will continue to be important, and will become better 

able to combine more data and continue to raise accuracy, especially with distantly-related 

sequences. As computational abilities increase, consistency-based scoring methods can be 

expanded to examine even more of the data at a time, and increase accuracy further. As 

more research is done on MSAs, programs will be able to better and better approximate 

true biological relationships. 
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